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Abstract We have calculated the electronic selfenergy of he two-dimensional Hubbard model 
as a function of frequency ond momentum for various band filiings. We p m t  this up to 
second order in the interaction parameter and also up to infinite order for ladder diagrams in 
the two-particle scattering channel. We have canied out direct k-space integJations using 8 

uiangle method. For a half-tilled perfeclly nested band, the imaginary p a  Im Wf, U), has 
a linear-u dependence for nested Fermi surfaces which is consistent with the marginal Fermi 
liquid phenomenology for high-7, superconductors. At, and near, half-filling there is a SUOng 
lowenergy peak in Im E(z) (k ,  o) when k is off the Fermi surface. The physical origin of this 
peak will be discussed. The peak is enhanced in the ladder approximation. The corresponding 
svucture in Re E‘”(k .o )  leads to multiple solutions of the Dyson equation for a wide range 
of values of the parameters. This leads to an appealing expianatioo of observed srmchue in 
some experimentll angle-resolved photoemission spectra of high-& materials. We also find 
anti-bound slates split off from the bind in lbe two-particle scattering ladden consistent with 
the suggestion of Anderson. 

1. Introduction 

The Hubbard model i s  a subject of perennial interest to theoretical physicists. Recently 
much work has been done using the two-dimensional Hubbard model as a description of 
the properties of high-temperature superconductors. Despite its apparent simplicity there are 
many difficulties in extracting useful results. Attempts at a purely analytic solution quickly 
run into intractable difficulties. The only exact results that exist for the Hubbanl model are in 
one dimension [I], though there are great simplifications in infinite dimensions [Z]. Another 
approach is to use quantum Monte Carlo simulations or similar numerical techniques 131. 
There are difficulties associated with this approach also because rather small cluster sizes 
have to be used to obtain a result in a realistic amount of computer time. In view of this, 
any results conceming the two- and three-dimensional cases are of interest. 

Apart from their high transition temperatures, high-T, materials exhibit unusual normal- 
state properties, some of which cannot be understood in terms of a conventional Fermi 
liquid interpretation. This has led to speculation that the electronic ground state in these 
systems is not a Fermi liquid. If this is the case then it would invalidate conventional 
theoretical approaches to the superconducting state which assume pairing of opposite-spin 
quasiparticles in a Fermi liquid background. There have been many different non-Fermi 
liquid theories proposed 141. Some believe that the essentlal feature of these materials is 
strong electron correlation. This has been developed by Anderson in the RVB theory [5] to 
account for normal-state properties and the superconducting state. Various phenomenologies 
of the normal state have also been put forward to address either individual experiments or 
a broad class of results. The marginal Fermi liquid phenomenological hypothesis of Varma 
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and co-workers [6] has been successful in accounting for several different experiments and 
implies a non-Fermi liquid ground state. A proposed justification of the marginal Fermi 
liquid phenomenology has been provided in the nested Fermi liquid theory of Virosztek and 
Ruvalds [7] in which they derive equations for the susceptibility with the same functional 
form. The nested Fermi liquid theory is based on a weak-coupling treatment of the two- 
dimensional Hubbard model. 

Our approach is firstly to calculate Z ( k , o )  in second-order perturbation theory as 
accurately as possible using a direct k-space integration by a triangle method 181 and 
secondly to carry out the obvious extension to higher-order perturbation theory by summing 
ladder diagrams in the two-particle scattering channels. Our careful numerical calculation 
demonstrates that there are new and unexpected structures in the self-energy which are 
robust to simple higher-order perturbative corrections. The consequences of these new 
effects should be taken into account in any more sophisticated many-body theory of the 
Hubbard model. 

The low-order results we obtain confirm the nested Fermi liquid results of Virosztek 
and Ruvalds. The results also display other interesting behaviour at rather low values of o. 
The imaginary part of the self-energy has a strong low-o peak, which develops as k moves 
off the Fermi surface; this peak has a nearly discontinuous upper edge. The peak persists 
and is, indeed, enhanced in the ladder approximation. In view of the possible physical 
importance of this new feature we have devoted some effort at understanding its origin. 
The peak is also present in the one-dimensional results where it can be understood more 
easily. It arises from the fact that the energy denominator in ZIz1(k, o) has two distinct 
maxima in widely separated nearly discrete regions of phase-space corresponding to forward 
and backward 'scattering across the Fermi surface. The peak in the low-energy imaginary 
part of the self-energy implies a corresponding feature in the real part and has consequences 
for the spectral density and for the calculation of the ARPES spectrum. Some experimental 
AWES results display similar structures which can be explained in terms ofour results. 

In section 2 we describe the triangle method used to calculate the self-energies and in 
section 3 discuss the results for the half-filled case. The interesting new peaked feature at 
low energies and its physical consequences in the calculation of ARPES results are analysed in 
section 4 in terms of the contributions to the total self-energy from individual q-summations. 

In section 5 we present the self-energy calculations for non-nested Fermi surfaces. 
These include a doped bandstructure with nearest-neighbour hopping and a bandstructure 
that introduces next-nearest-neighbour hopping. Section 6 describes the calculation and 
results for the infiniteorder scattering diagram and its relation to the ideas of Anderson 
concerning the splitting off of higher-energy bound states from the band. 

2. Method of calculation 

We start with the two-dimensional Hubbard model ' 

iJ.o 
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H = --t C(c :c j .  + HC) + U C(ni tn i&)  (1) 

where U is the on-site Coulomb repulsion and f is the hopping integral. 
It is possible to examine this Hamiltonian in a variety of limits depending on the 

strength of the correlation. We shall first calculate the second-order self-energy correction, 
Z"'(k, U ) ,  defined by the diagram in figure 1: 
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I I 

I I Figure 1. Bubble diagram for semnd-order perturbation 
I calculation of E@)(k, U). 

Using a direct numerical integration technique we are able to calculate the frequency- and 
momentum-dependence of the imaginary part of the self-energy for the two-dimensional 
Hubbard model for various bandstructures and bandfillings. The real parts are obtained by 
a Hilbert transform of the imaginary parts. The results are of relevance to the conclusions 
of the nested Fermi liquid theory, which may provide a microscopic justificatlon of the 
marginal Fermi liquid hypothesis of Varma and co-workers [6]. 

To evaluate the momentum integmls in (2) we use a triangle method which is an 
adaptation to two dimensions of the tetrahedron method [8]. 

We first calculate the imaginary part of the q integral in the particle-particle channel: 
~ 

There is a similar function, nc”, in the hole-hole channel. The Fermi functions in the 
numerator define allowed regions of q space. For a given o the integrand is singular along 
lines in q space which contribute to the imaginary part only when they intersect these 
regions. If we define 

then the imaginary part of (3) can be written as a line integal 

where dL, is a line element along a contour of singulanty in q space for a given frequency. 
The integral is performed over the first Brillouin zone which is a square. The square is 
divided up into N smaller elemental squares, each of which in tum is divided into two 
triangles with a bisecting diagonal that is parallel to the Fermi surface in each quadrant of 
the zone. In each triangle the denominator, D, is approximated by a linear function of q 
and the contribution of each triangle to the q integral can be written down exactly. The 
result for each triangle is summed to give the total q integral. This is done for a range of 
energy wider than the bandwidth. The second required momentum integration over p is 
done by a straightforward summation of the q-space results. This method of integration has 
been well tested in many contexts and is known to be numerically stable and convergent 
as the triangles get smaller. Using this technique we have been able to accurately evaluate 
the imaginary part of the second-order self-energy as a function of frequency for any point 
in k space. 

There are other numerical calculations of self-energies in the Hubbard model. Many 
papers, though of interest, are concerned with the three-dimensional Hubbard model, such 
as the work of Treglia and co-workers 191. Taranko and co-workers [IO] (who both discuss 
correlation effects in nickel) and Bulk and Jelitto [ I l l ,  whereas we are concentrating 
exclusively on the two- and one-dimensional cases. Also, these authors use the ‘local 
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approximation', i.e. a k-independent self-energy for which there is no sound justification in 
low-dimensional cases. Schonhammer and Gunnarsson [12] have also performed a similar 
self-energy calculation in the two-dimensional Hubbard model using density functional 
theory. Galan and Verges [I31 have recently calculated a number of properties of the 
two-dimensional weak-coupling Hubbard model using a Lanczos diagonalization method 
on 4 x 4 lattices demonstrating the utility of the perturbative method for the Hubbard 
model. 

The numerical technique described in this paper has not been used before in 
the evaluation of second-order self-energies in the Hubbard model. Schweitzer and 
Czycholl [ 141 have used a 1/N dimensional-expansion technique to calculate similar results. 
Our results for the self-energies are in close agreement with theirs, though they did not 
attempt a ladder-diagram calculation. The structure. present in their self-energies is not 
discussed. In this paper it is possible to understand the origin of features present in the 
self-energies in terms of contributions to the integrals from disjoint regions of phase space, 
as discussed in section 4. This gives us confidence that the numerical method is sound 
and that the physical implications of self-energies of this sort in the AWES experiments are 
plausible. 

C J Rhodes and R L Jacobs 

3. Results for half-filling 

The first point of interest is to see if the application of the numerical method to the half- 
filled perfectly nested case corroborates the results of the analytic calculation of Virosztek 
and Ruvalds. Following their analysis we model the Cu-0 plane using a square lattice. We 
use a two-dimensional tight-binding band of the form 

~k = - cos kz - cos k,. (6) 

This gives a bandwidth, W ,  of 4 and we examine the second-order self-energy correction 
relative to a half-filled paramagnetic ground state: nit = niS = 1/2. 

States are occupied up to &k = 0 where lkxl + Ik,l = I( and are otherwise unoccupied. 
The first Brillouin zone is a square. 

The imaginary part of the self-energy is calculated at points with k = (1, l )k / f i  where 
(i) k = kf, (ii) k = 1.15kf. (ii) k =~1.3kf or (iv) k = 1.5kf. 

Figure 2. ImZ;'z'(k.o) for four values of 
k along be (1 , l )  direction in the half-filled 

" case. 
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Figure 4. ImZ(”(k, e) for three values of 
I o  kalongthebnek,fk, =amthehalf-filled 

case. 

U 
These four self-energies are shown in figure 2 and the corresponding real parts fork  = kf 

and k = 1.3kr are in figure 3. We have also calculated the imaginary parts of the self-energy 
at three other points and shown them in figure 4. At the zone comer the curve shows no 
significant structure, in contrast to the logarithmic singularity in the density of states at the 
saddle point. We therefore do not expect any significant breakdown in perturbation theory 
for the self-energy due to saddle-point effects. 

To perform these calculations we divided the first Brillouin Zone into 6400 squares 
and found from the results that Im Z“’(k, w )  cx w and Re Z(”(k, w )  w lnw for k = kf 
and low w. In a conventional weak-coupling treatment of an interacting Fermi liquid at 
T = OK in two dimensions, Im ZCr2’(k,  w )  o( wz Inw [IS]. Our numerical result agrees with 
the analytic calculation o f  Virosztek and Ruvalds and the marginal Fermi liquid hypothesis 
of Varma and co-workers. For k points off the Fermi surface the low-frequency linearity is 
lost and the usual non-linear behaviour is recovered. Our results show that linearity is only 
present for k = kf and is not maintained when k moves off kf.  This is in agreement with 
the calculations of Schweitzer and Czycholl [14]. 

The self-energies are plotted on a frequency scale of  W/40 to ensure a reasonable 
resolution of structure. The choice of mesh size which is then used to perform the 
momentum integrals at each energy point is determined by the time taken to perform a 
calculation and the computer time available. In this case a mesh of  6400 squares was 
used, which typically took around fourteen hours to calculate the full frequency dependence 
o f  an imaginary self-energy at a given point in k space. The smaller irregularities in the 
imaginary self-energies are due to numerical effects whereas the structures described in the 
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next section are intrinsic, irrespective of the relative fineness of the momentum integration 
mesh. 

C J Rhodes and R L Jacobs 

4. Features of the self-energy calculations 

The momentum dependence of the imaginary part of the self-energy when k moves off the 
Fermi surface shows interesting features that develop continuously as a function of k. A 
strong low-frequency peak with a nearly discontinuous upper edge emerges. This is clearly 
visible in figure 2. A corresponding structure also appears in the real part as a sinuosity 
which is visible in figure 3 near w = 1. For a quite moderate value of U/ W this gives rise 
to an additional solution of the Dyson equation w - EK -Re Ccz)(k,  w )  = 0. The emergence 
of this extra solution gives additional peaks in the calculated spectral weight and there is 
some experimental evidence for additional peaks in the AWES results of Takahashi and 
co-workers [16] although other experiments do not show this [17]. In figure 5 we show a 
calculation of the spectral weight based on the second-order self-energies for U/ W = 314 
and at the point k = 0.7kf(l, I)/& Takahashi interprets these AWES features as arising 
from separate quasiparticle bands. Our results suggest that, if there, they arise from the 
additional solutions of the Dyson equation. It is not necessary to start off with a model 
involving two or more bands. 
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It is important to understand the emergence of this peaked structure in the imaginary 
part of the self-energy and how. it evolves with differing momenta. To do this we examine 
the individual contribution of each summation over q to the total self-energy integral by 
evaluating (3) for a selection of different p values: For  convenience^ we will look at the 
imaginary part of the self-energy at IC = ISkf(1, l)/& In figure 6 the results of *e q 
summations for six different p points are shown. There a& rhreeof these, labelled d, e and 
f, which have upper edges which coincide around the value o = 1.5 while the remainder, 
labelled a, b and c, have edges which disperse across a broad range of frequencies. The full 
result for Im F2)(k,  o) is the sum of these and other contributions. The coincidence of the 
edges of many separate contributions gives rise to a strong peak in the imaginary part with a 
very nearly discontinuous upper edge. This effect depends on the way the Fermi factors in 
the numerator of (3) restrict the region of integration. There is also a bandstructure effect. 
To demonstrate this we consider points along the (1,l) direction so (4) can be written 

D(k ,p ,q ,o)  = & - ~ c o s ( ~ ) + ~ c o s ( ~ + ~ )  + ~ C O S ( P  -4). (7) 
, ~. 

To find the stationary points'of this function we differentiate with respect to 6 and sei the 
result to zero, i.e. 

(8 )  - sin(k + q )  + sin(p - q)  = 0 

so for a given k and p there are stationary points at 

(9) 

For given k and p it is possible to calculate the energy of ati edge in the q summation from 

(10) 

q = -- - + nn. 
2 

w =2cos(p) +2COS(k - &(k - p) +nn) +2cos(p+ i (k  - p) -nr). 

In figure 7(u) we show the allowed region of q'space for the p-value in figure 6 labelled.(u). 
(In the two-dimensional Hubbard model the allowed region of integration is a bypervolume 
in a four-dimensional pq space, so we can only present two-dimensional slices through 
this space corresponding to fixed values of p.) Within the allowed region we show the 
contours on which the denominator in (3) is constant As p increases further the allowed 
region over which the integrand exists shrinks~until at some critical value of p it vanishes 
completely. The frequency of the upper edge of the q summation depends strongly on p 
up to the critical value as shown in figure 6(a)-(c). 

As p increases beyond this critical value the allowed region reappears again, with the 
.same shape. but displaced in,q space by an amount (+a,+r). A region is shown in 
figure 7(b). This corresponds to the q summation labelled (d) in figure 6. The width of the 
allowed region i n ~ q  space grows as p increases from the critical value. Furthermore the 
frequency of the upper edge of the q summation now depends weakly on p as shown in 
figure 6(+(f). The overall result for the self-energy involves the summing of many such 
individual q summations f" each p point. The q summations  with^ edges at energies that 
are nearly coincident will, when summed, form the peaked structure visible in the imaginary 
part in figure 2. From (10) it is possible to see how the edges vary with energy in the two 
disjoint allowed regions and why in one region the edge dispersion is stronger than in the 
other. For graphs (aHc) in figure 6 we set p = n/4 - y ,  k = 1.5kf = 3n/4 and n = 1 
and expand to get 

w=.JZ+3.4y. (11) 
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Figure 7. (a) Slice through allowed region 
of inlegration in q space when p = 0.2pr 
(I, I). (b) Slice through allowed region 
of inkgation in q space when p = 0.7pr 
( I .  1). 

" %&.. %,,, '.. , . ,..,, ..*. '%b ,+&. 
0.0 

P. 

For graphs (+@ in figure 6 we set p = rr/4 + y and k = 1Skf = 3x14 and n = 0 and 
expand to get 

O Y  &+0.6y. (12) 

From these two equations it is clear that in one region the position of the edge is strongly 
dependent on p whereas in the other this dependence is less strong so giving rise a very 
weakly dispersive edge energy in the q-summation results. 

It is the splitting of the region of integration into two neady disjoint regions that is 
the main characteristic of such self-energy calculations in two dimensions. When k is on 
the Fermi surface there is no splitting of the allowed region of integration so there is no 
low-energy peak. As soon as k = kf + 6, where 8 is small but finite, a small piece of phase 
space is pinched off from the main region of integration which generates a small low-energy 
peak and a non-linear behaviour for o + 0. For k values further from kf the pinched off 
region grows thus pushing more weight into the low-energy peak. This development is 
clearly visible in the sequence of imaginary self-energies in figure 2. 

In the case of the onedimensional Hubbard model this splitting is easily understood and 
it shows up spectacularly in the appearance of strongly peaked structures at low frequencies. 
These structures have exactly the same physical origin as in the two-dimensional case and 
because of this have a small, but finite, width. As in the two-dimensional case, the integrity 
of the allowed region of integration for k = kf means there is no low-energy peak for this 
particular k value. In the onedimensional case the allowed region of phase space is two- 
dimensional and a more explicit description of the region can be made. In figure 8 we show 
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.. 

, .. 

Figure 8. The whole of the allowed region 
of inteption in p9 space for the one 

kr. 

Figure 9. Im E'')(k,m) for the one- 
dimensional Hubbard model for Two values 
of k. 

I 1 

. ,  P O  

r.0 

- 0.0 

.. ~ 

-r.o 

-2.0 
Figure 10. The whole of the allowed 
region of integration in pq space for the 

-<.o -sa -LO ->.o 0.0 8.0 LO' 3.0 4.0 onedimensional Hubbard self-energy, when 
k = 15ki .  

-3.0 

the allowed region of integration when k = kf and in figure 9 the comesponding imaginruy 
part of the self-energy. This region is connected and hence there is no low-energy peaked 
structure in i t  Also as w + 0, Im C(kf, o) c( w. For k off the Fermi surface the allowed 
region of integration shown in figure 10 is no longer connected, and a small disjoint region 
appears which gives rise to the strongly peaked low-energy structure visible in figure 9. This 
is directly analogous to the physical process giving rise to the peaks in the two-dimensional 
case. Some analytic results for this case have been produced by Zlatic and co-workers [E!], 
which coincide with our numerical results in all respects. For the three-dimensional Hubbard 
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model such phenomena will be weaker because the characteristic van Hove singularities in 
three dimensions are weaker. In the next section we test the robustness of these features by 
using alternatives to the half-filled nearest-neighbour-hopping tight-binding scheme. 

5. Away from perfect nesting 

In section 4 the results for the imaginary part of the second-order self-energy were calculated 
with the tight-binding half-filled band of (6). A perfectly nested Fermi surface is perhaps a 
somewhat artificial representation of the electronic structure of the copper-oxide plane and 
may give rise to special effects that are lost at less than half-filling. We describe non-nested 
Fermi surfaces in terms of a doping parameter so that the Fermi surface is no longer flat, 
and include later next-nearest-neighbour hopping terms which have a similar effect 

From the same numerical method as before, we calculate the imaginary part of the 
second-order self-energy for the non-half-filled case. We use a bandfilling of 0.37. In 
figure I1 a sequence of four self-energies is shown for points along the (1,l) direction, 
starting on the Fermi surface and moving out towards the zone comer. Because perfect 
nesting is no longer present the linearity in the imaginary part at low frequencies is lost. 
Other calculations of Im Z(kf, U) at points on the Fermi surface also showed non-linear 
behaviour at low frequency. At much heavier doping levels, with no significant nesting, 
the low-frequency behaviour is definitely non-linear. However there are still strong low- 
frequency peaks up to a bandfilling of 0.3 1. An analysis of the allowed regions of momentum 
space in the doped case leads to conclusions similar to those in the perfectly nested case. 
Now the alteration of the shape of these regions due to doping changes the relative weights 
in the low-energy peaked structure only slightly. Because these peaks survive the loss of 
nesting our conclusions about the ARPES results are unchanged. 

0.30 

9 
5 O'zo 

0.10 

~~ 

Figure I t .  As for figure 2 but for a band 
filling of 0.37. 

0.00 
0.0 4.0 

To include the effects of next-nearest-neighbour hopping term we put 

EX - w -CoSk, -coSky f A COSkzCOSky (13) 

where A is the next-nearest-neighbour hopping integral. Bandstructures of this sort have 
been used to describe the Fermi surfaces observed in some high-T, materials [18]. 

In figure 12 we present a sequence of imaginary self-energies with a half-filled band 
and A = 0.3. Although the Fermi surface is of a quite different shape to that in the 
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r I 

perfectly nested case, strong peaks emerge in the low-frequency range indicating that this 
phenomenon is quite stable against considerable deformation of the Fermi surface. 

The non-half-filled case with next-nearest-neighbour hopping included can also be 
considered. We chose A = 0.2 and a filling of 0.45. This a particularly special choice 
of Fermi surface because there are saddle-points in D where the Fermi surface meets the 
zone edge as in the perfectly nested band [19]. A sequence of imaginary self-energies 
along the k = (1, 1) line is shown in figure 13. As before, a peaked structure is visible and 
evolves as k moves toward the zone comer. 

o'*or j \ ! 
/"\ I 

Fwre 13. As for figure 2 but with next- 
nearest-neighbour hopping included; A = 
0.2 and with a band filling of 0.45. 

6. Ladder diagrams 

In this section we will demonstrate the robustness of our new structure in the self-energy by 
showing that the simplest higher-order perturbative corrections enhance rather than diminish 
the structure. These corrections are the infinite sum of ladder diagrams of which an example 
is illustrated in figure 14. Ladders are mostly used in low-density situations rather than the 
high-density situations of this paper. However, ladder approximations do take into account 
multiple-scattering and excluded-volume effects. We shall further demonstrate that in the 
two-dimensional Hubbad model there are anti-bound states in the parlicle-particle channel 
(and bound states in the hole-hole channel) for any value of the interaction parameter 
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U however small. This is a rather trivial consequence of the fact that the characteristic 
van Hove singularities in two dimensions are. discontinuities. This is a controversial and 
important topic because Anderson [ZO] claims that these anti-bound states are. responsible for 
a low-energy catastrophe (rather like the soft x-ray singularity) which is responsible for the 
anomalous normal state properties of the high-T, materials. Engelbrecht and Randeria [21] 
argue that there is no such catastrophe in any order of perturbation theory and that the 
Anderson effect cannot explain the data. We shall comment on this. 

C J Rhodes and R L Jacobs 

- 
$ B / O  

r 
1 

6 O.O5 

.I 

I 

L I 

0.00 

1 ' 1  I 1  Figure 14. The selfenergy diagram in the ladder 
, I  I 1 ,  ~~ calculation. 

- r(* 
- - PI 

- 

~~ Figure 15. Vertex correction in second- 

We sum the ladder diagrams of figure 14. The contribution to the self-energy from the 
particle-particle channel is 

where 

rtp)(k, p .  w )  = U[l - UITp)(k, p .  0 ~ ) I - l  ( 1 3  

and I7'P' is defined in (3). There is a similar contribution from the hole-hole channel. In 
figure 15 we show Im n ' p '  and I m P )  for p = 0.4~(1,1), and IC = 0.75ir(l, 1). We have 
used a small additional broadening to make the anti-bound state in r(P) clearly visible. In 
figure 16 we show Im X(P) for k = 0.7Sx(1, 1) in second-order perturbation theory and in 
the ladder approximation for a bandfilling of 0.37. The anti-bound state arising from those 
contributions to E'*) which produce the low-energy bump are all at very nearly the same 
energy and can be clearly seen as a sharp peak in E@'). The width of this peak is mostly 
due to the artificial broadening which makes it visible. Because of the MITOW width of this 
peak the lifetime, r, of states in the peak is long. 
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iig- 16. A typical result for Im W ( k ,  OA 
in the ladder approximation showing the 
smng narrow peak at rather low frequen- 
cies due lo anti-bound states and also 
the corresponding seconborder self-energy 
ImZ(2)(k,o) for k = 0.75n(l,1) and a 
bandfilling of 0.37. The mult for the ladder 
calculation has been smoothed on the scale 
of the energy interval @'ween successive 

0.0 r.0 . LO 3.0 1.0 poinu.@ remove numerical noise of known 
origin. 

In the soft x-ray problem the scattering centre is a well-localized deep level on one 
atom in the system which has a long lifetime. It is important for the appeamnce of th: 
lowenergy catastrophe that this lifetime should be long compared to the time interval 7 

over which the scattering event occurs. The results of the previous paragraph show that 
there is a good chance that 7' << r and that a low-energy catastrophe is possible in the 
Hubbard problem. 

The energy of the peak, of course, changes as k changes but it remains of n m w  width 
so that at a fixed value of k the low-energy catastrophe in Z ( k ,  w )  is possible. It is to this 
catastrophe that Anderson attributes the normal-state properties. 

Perturbation calculations even of infinite order do not affect Anderson's argument 
because the soft x-ray singularity (or low-energy Catastrophe) is an inbinsically non- 
perturbative effect. 

7. Conclusions 

In this paper we have investigated self-energies in the two-dimensional Hubbard model using 
a variety of bandstructures and band fillings. From our results we conclude that the linearity 
of the low-energy region of Im ZC2'(k, w )  in the two-dimensional Hubbard model occurs 
only in  perfectly nested bandstructures. Any deviation f" perfect nesting is sufficient to 
destroy agreement with the marginal Fermi liquid hypothesis. 

Our numerical methods enable us to investigate the momentum dependence of the self- 
energy. This shows the existence of strong low-energy peaks in the imaginary part which 
evolve continuously ask moves off the Fermi surface. We have shown that these structures 
arise from a splitting of the allowed region of integration into two disjoint regions and have 
illustrated this by examining the same process in the one-dimensional case. These strongly 
peaked structures, which also occur for non-nested Fermi surfaces, may have implications 
for AWES measurements, though this has  yet to be conclusively demonstrated. 

We have evaluated the vertex function I"P' and the self-energy I$') in the infinite- 
order ladder approximation and found anti-bound states pushed to higher energies in the 
particbparticle channel. From an analysis of the structure. in the imaginary part of the 
self-energy we find evidence to support the view that the scattering in the two-dimensional 
Fermi system is analogous to that found in the soft x-ray problem. 
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